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Abstract

In recent years, the previously reductionistic style of biological research has turned
firmly towards systematic integrative paradigm, the so-called systems biology. In
this novel paradigm, a functionality of a living cell is understood as a large set of
complex biochemical reactions of several kinds running in parallel at different time-
scales. The central mechanism which drives every living cell is protein synthesis, the
so-called transcription, which is realized according to the genetic code. There are
complex regulatory interactions that control transcription of genes to proteins. Ow-
ing to their inherent complexity, analysis of dynamical models of such interactions
requires a scalable computational approach. In this paper we employ parallel LTL
model checking for a case study of selected dynamic properties of an in sillico model
of transcription in Bacillus subtilis, a bacterium living in soil. Moreover, we show
the general fact that crucial LTL properties characterizing transcriptional dynamics
can be inferred from network motifs commonly studied in systems biology.
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1 Introduction

The traditional reductionistic style of biological research is nowadays turning
towards systematic integrative paradigm, the so-called systems biology. There
appear plenty of databases of biological knowledge keeping both structural
and functional aspects of living organisms. Existence of such databases allows
building of in silico models that predict functionality of living cells.

Each function of any living cell is driven by proteins. Proteins are syn-
thesized according to the genetic code in the process of transcription. Tran-
scription of genes to proteins is controlled by complex regulatory interactions.
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These interactions are driven by specific proteins, so-called transcription fac-
tors, which collaborate on activation (increase) or repression (decrease) of
particular gene transcription. For each cell type the transcription regulation
is described by a transcriptional regulatory network (TRN) in which nodes
represent proteins and genes interconnected by edges denote their mutual in-
teraction. TRNs make the bottom level of complex biological networks and
pathways. Even when taken separately, TRNs of most of pathways can be
themselves very large (having around 10s of genes). A scheme of a TRN is
depicted in Figure 1. There is a network of 8 genes from which m proteins
(each denoted X;) is produced. Additionally, the process of regulation is con-
trolled by n external signals which determine interface for interaction with
other functional layers in a cell.

— activation

—— repression

genel gene2 gene3 gened gene5 gene6 gene7 gene8 DNA

Fig. 1. Scheme of a transcriptional regulatory network

In order to deal with the complexity of transcriptional regulatory networks,
experimental methods have to be supplemented with mathematical modelling
and computer-supported analysis. One of the most critical limitations in ap-
plying current approaches to modelling and analysis is their pure scalability.
Large models require powerful computational methods, the hardware infras-
tructure is available (clusters, GRID, multi-core computers), but the parallel
(distributed) algorithms for model analysis are still under development.

The most widely-used modelling frameworks for the analysis of the dy-
namics of TRNs are based on ordinary differential equations [30] (ODE). The
reduction of continuous models to discrete automata by a sequence of ap-
proximations and abstractions allows formal methods for the automated ver-
ification of properties of discrete transition systems to be applied [9]. One
of methods which can be employed here is model checking. At the contin-
uous level, interesting properties of TRNs can be characterized by certain
parts of the interaction networks — so-called network motifs. Role of network
motifs in dynamic behaviour can be mathematically analyzed [?]. However,
such mathematical analysis is very complicated and cannot be done automati-
cally. Therefore, model checking appears to be a suitable tool for algorithmical
analysis of ODE models, in particular, their discrete abstractions. Properties
which can be analysed by model checking include the behaviour specific for
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known network motifs. Recent studies on biologically-relevant properties iden-
tified the need for both branching-time temporal operators, able to express
multi-stability properties (reachability of several different equilibrium states)
([2,?]), and linear-time temporal operators, able to capture the oscillations of
protein concentrations ([?,?]) as well as temporal ordering motifs ( [?]).

When dealing with large TRNs, standard model-checking techniques do
not provide acceptable response times for answering user queries and paral-
lel model-checking algorithms are required. Owing to dynamical dependences
among state variables, the state-space explosion arises during reduction to
discrete automata. Even relatively small ODE models containing around 15
state variables lead to large automata having hundreds of thousands states.
However, while substantial work on model-checking qualitative as well as quan-
titative properties of biochemical networks has been already achieved, to our
best knowledge, no attempts to use parallel model checkers to analyse complex
networks are known.

1.1  Our Contribution

In this paper we present a case study of applying parallel model checking to
analysis of transcriptional regulatory networks using the extension GeNeSim of
the parallel model-checker DiVinE [1]. We employ the piece-wise affine discrete
abstraction method in which differential equations of the original ODE model
are reduced to a system of piece-wise linear differantial equations (PLDE) as
proposed in [19]. Our distributed state space generator is based on the respec-
tive qualitative simulation method implemented (as a sequential algorithm)
in Genetic Network Analyser (GNA) [6].

The DiVinE distributed state space generator allows on-the-fly generation
of the transition graph giving thus in many circumstances the possibility to
analyse properties of even larger networks as opposed to the explicit represen-
tation as used in GNA simulator. This allows to check biologically interesting
liveness properties on larger models than is possible with traditional sequential
approach. In this case study we demonstrate that parallel model checking can
extend the possibilities of qualititative analysis of Bacillus Subtilis bacteria
presented in [16].

From our experiences on collaboration with biologists we have found it
difficult to fully take advantage of the strong power of temporal logic. It is
mainly because of the fact that thinking of biologists, based on experiments,
principally differs from that of computer scientists. At present, it is far from
reality that a temporal logic formalism can be directly used by biologists. To
this end, we try to reveal biologically interesting LTL properties from the
notion of network motifs which is well known in the biological community.
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1.2 Related Work

The use of model checking for the analysis of biological networks has attracted
much attention [9,32]. The individual approaches differ in models and model-
checking tools used. Our approach is based on qualitative hybrid models as
proposed by [19] and implemented in the GNA [17]. Besides GNA there are
some other sequential approaches for model-checking of ODE models. The
BIOCHAM workbench [12] provides an interface to symbolic model checker
NuSMYV and the enumerative CADP verification toolbox; the interface is based
on a simple language for representing biochemical networks. The workbench
provides mechanisms to reason about reachability, existence of partially de-
scribed stable states, and some types of temporal behaviour. Another tool is
the Robust Verification of Gene Networks (RoVerGeNe) [2]. To the best of our
knowledge, none of the tools mentioned above employ the parallel approach.

This work extends our previous work [?] in two directions. At first, we
introduce a pool of biologically relevant LTL properties which are systemati-
cally derived from transcriptional motifs which frequently appear in biological
databases [?7,?]. At second, the experiments of the Bacillus Subtilis case study
presented in this paper are aimed at demonstrating how the motif-specific
properties can be checked on complex networks that combine several motifs
together.

2 Preliminaries

Before we start with stating the properties of individual transcriptional mo-
tifs, we briefly explain basic principles of PLDE systems and their qualitative
simulation. The precise definition of these principles is given in [19]. Finally,
we also give a syntax of the LTL logic used in this paper.

2.1 PLDFE Systems

Assume we fix a network with n proteins. Let the concentration of ith protein
in a time instant ¢, where i € {1,...,n}, be denoted by the variable x;(t). The
respective PLDE system consists of a set of n equations. For each protein
there is an equation describing how its concentration changes in time:

dx;

d_tl = Z"%l@il«xl; ,$n>) — Y%
leL

where

e [ is a finite index set.

e For each i € {1,..,n},l € L k; is a constant expressing the rate of protein
production.

e 0y :R"™—{0,1} is a discrete input function.
4
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* ; is a constant expressing the rate of exponential decay of protein .

In general, each equation of the system consists of two terms — the positive
production term and the negative degradation term. The latter term is natu-
rally nonzero and describes instability of proteins among other species in the
cell. The former term describes the transcriptional regulation, in particular,
the intensity of protein production w.r.t. the current conditions in the cell.
More precisely, the maximal production is given by the production constant
k and it is additionally regulated by the input function p.

The input function p in general depends on the current concentration of
all the proteins in the system. In piece-wise linear approximation the (mul-
tidimensional) input function has a discrete range and is given by a product
of elementary (one dimensional) step functions. These step functions qualita-
tively characterize edges in TRNs, in particular, the transcriptional activation
or repression of the target gene by a certain transcriptional factor w.r.t. its
given threshold concentration. The input function has the form:

ou((x1, ..y my)) = H s* (x5, 07)

where s* : R — {0,1}, x € {+, —}, denotes a so-called step function defined
for the protein concentration x; and its threshold 0; by the expression:

. . . 1, if Z; > 9;,
activation : s™(z;, 0;) — .
0, if x; < 9;,

repression : s~ (z;,05) =1 — 5" (x;,0})

2.2 Qualitative Simulation

For given initial conditions (initial concentrations of protein species), the possi-
ble evolution of protein concentrations in time can be predicted by simulation.
The algorithm of qualitative simulation for PLDE models relies on the fact
that input functions given as products of step functions have discrete ranges.
Up-to this approximation, the concentration values of proteins are discretely
abstracted into several open intervals between respective thresholds, and ad-
ditionally, the discrete points equal just to the threshold values.

For each variable there is a finite number of regulation configurations de-
termined by particular values of the step functions. In each such configuration
the transcriptional regulation tends towards an equilibrium state (a so-called
local equilibrium) determined for some L' C L by the equation:

dl‘i = 0 = XT; = 72!6[/ Fit
dt Vi
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If we consider a variable x; then for each particular configuration of the
binary values returned by step functions appearing in the respective equation
the equilibrium concentration value is given just by the expression above. In
order to simulate the dynamics of the PLDE system, we set for each variable
the inequality condition which mutually relates all the thresholds defined for
that variable, and moreover, we also put each possible equilibrium concentra-
tion value between some two succseeding thresholds.

Evolution of protein concentrations starting from the given initial values is
then given by the state transition system in which each state is characterized
by the vector of current discrete concentration levels of the proteins (open
intervals or just the thresholds). Because each protein is naturally degraded
(7 is always nonzero) values of each variable are bounded by some maximal
level and hence the system has finite number of states [19].

The outgoing transitions are computed differently for states where all vari-
ables are set to values approximated by an open interval (so-called regulatory
states) and for states where at least one variable has a value equal to some
threshold (so-called switching states). Each transition means visiting some
of the succeeding states in the global phase space. In the former case, the
transitions are determined directly by the direction vector leading from the
current state to its respective local equilibrium state. In the latter case, the
direction vector is computed by an intricated algorithm which relies on analy-
sis of the system dynamics in neighbouring states. In general, time complexity
of computing outgoing transitions for a given state is exponential in number
of variables in the system. This is an imposition due to the accuracy of the
overapproximative simulation and also a motivation for employing the parallel
model checking method for analysis of PLDE systems.

3 PLDE and LTL Approach to Transcriptional Motifs

In this section, we characterize the basic transcriptional motifs modeled as
PLDE systems. For each motif we state a set of LTL properties which describe
qualitatively its significant dynamical properties. We focus on motifs that
embody qualitatively exceptional properties, in particular, we do not include
motifs that manipulate timing aspects of transcriptional interactions (e.g.,
single input modules, feedforward loops,... [?]).

3.1  Autoregulation Motifs

Autoregulation is the most simplest motif which appears very frequently in
all TRNs [?]. It deals with one variable (one protein) which regulates its
production from its own gene. Such a regulation determines the resulting
amount of the protein concentration which is achieved when the system reaches
a global equilibrium state. In particular, the regulation is controlled by a step
function which depending on the current amount of the protein concentration
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returns its increment. Depending on the character of the step function there
are two types of autoregulation — negative and positive.

3.1.1 Negative Autoregulation

In the case of negative autoregulation, the input function is given by a single
step function denoting repression. In particular, this means that the protein
represses production of its own. The PLDE system consists of a single equation
having the following form:

‘fl—“t: = ks (z,0) —yx

The only local equilibrium state of this system is characterised by the
concentration value £. By positioning this value above or below the threshold,
we get different dynamic behaviour. In Table 1 there is given a characteristic
LTL property for each of these positions.

The first line shows the fact that the production rate is relatively low and
hence the autoregulation does not affect the transcription at the concentration
level below the threshold, whereas for the values above the threshold the au-
toregulation switches off the production. Both aspects lead to the observation
that this autoregulation motif forces the resulting global equilibrium state to
appear at levels below the threshold.

0<2<0 |FG(z

IN

)
)

0
7

0 <2 <maz | FG(z

Table 1
Characteristic Properties of Negative Autoregulation

The second line represents the situation when the local equilibrium con-
centration is set to a higher value than the threshold. In this case, the au-
toregulation affects all concentration levels and leads the system to the global
equilibrium in which the concentration value is equal just to the threshold
level.

3.1.2 Positive Autoregulation

Positive autoregulation is determined by a single activation step function.
Here the protein at certain concentration level activates its own production.
The respective PLDE system is analogous to the previous one:

dx

- = kst (x,0) — v

Similarly to the case of negative autoregulation there are two different
local equilibrium positions. They are listed in Table 2. In the first case,
the behaviour is just the same as in the previous case. However, the case
when the local equilibrium concentration is set above the threshold behaves
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differently. In particular, a kind of bistability arises. In other words, there
are two different global equilibrium states to which the system can lead. In
such a setting, the positive autoregulation behaves like a switch that desides
whether the system stabilizes at the maximal concentration level or at the zero
level. Both situations are possible. The LTL property (1) describes existence
of the two global equilibrium states — a necessary and sufficient condition of
bistability. In PLDE approximation, both states are reachable from a single
specific qualitative state — a so-called bistable switch. However, existence of
such a state cannot be directly expressed in LTL. Therefore we state at the
least a formula (2) which contradicts the existence of a bistable switch.

0<2<0 FG(z <0)
0 < £ <mazx L((z<0)=G(z<0)A((x>0)=G(z>0))
2. (x =0) = (GF(z > 0) AGF(z < 0))

Table 2
Characteristic Properties of Positive Autoregulation

3.2 Feedback Loop Motifs

Another significant cathegory of transcriptional motifs is represented by a
group of at least two different transcriptional factors which mutually interact
in a circular manner. In particular, the respective network is a cyclic graph.
Such motifs, depending on the type of individual interactions in the circle,
present behavior similar to the autoregulation (imposing stability or multi-
stability), or they can lead to concentration oscilations [?] (e.g., the well-
known cyrcadian rhythm).

In this section we state the properties of the most significant representants
of feedback loops, in particular, minimal loops made of just two proteins.

3.2.1 Double-negative feedback loop

In this kind of a feedback loop each of the two proteins represses the other one.
If we denote the proteins X and Y, respectively, the relevant PLDE system is
defined by two equations of the following form:

dx dy
_ — T — - Y
— =kgs (y,0)) — vux — = Kys (x,0%) — v,y
dt ( ) y) dt Y ( ) a:) Yy
0%<:—z<maxz L((z>00Ay<82) =G>l Ay<0E)A((x<0LAy>02)= Gz <8YAy>0%))
02 < ';—: < mamy 2. (2 =0Y Ay =0%) = (GF(z > %) A GF(z < 0Y)) V (GF(y > 63) A GF(y < 6%)))
Table 3

Characteristic properties of double-negative feedback loop

From the possible 4 different local equilibria configurations we consider
the most representative one, given in Table 3. In such a setting, the system is
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bistable, and moreover, there is a bistable switch in the state characterised by
the property that concentration value of each protein is equal to the respec-
tive threshold. The formula (1) states the property that two different global
equilibrium states exist in the system. Similarly as in the case of bistability
in positive autoregulation, the property of bistable switch is not expressible
in LTL. However, we state a formula (2) which involves just counterexamples
of bistable switch.

3.2.2  Double-positive feedback loop
This kind of two-protein feedback loop has the similar properties as the neg-
ative loop. The PLDE system differs only in signs of step functions used:

dx dy
o = fes (4, 0y) = 7w = = fs (@ 05) =y

The most representative configuration and the respective bistability prop-
erties are stated in Table 4. The property (1) differs from the respective prop-
erty of the negative loop only in atomic propositions. The bistable switch

contradiction (2) is just the same formula.

0%<%<mawz L((>00Ay>02)=Ga>0LAy>0)A (<0l Ay<62)= Gz <8YAy<bT))

0; < :—;’ < mazxy 2. (@ =0Y Ay =067) = (GF(z > 0¥) A GF(z < 6¥)) V (GF(y > 6%) A GF(y < 6Y)))

Table 4
Characteristic properties of double-positive feedback loop

3.2.8 Incoherent feedback loop

The most interesting two-protein feedback motif is based on circular interac-
tion in which the first of the two proteins acts as a repressor of the second
protein production while the second protein acts as an activator of the first
protein (or vice-versa). Formally, the corresponding PLDE system for such a
situation can be of the following form:

C;—f = k28" (Y, 0,) — Y %

The representative configuration of local equilibria is determined by the
same inequalities as in the case of the previous loop motifs. In such a situation,
the motif leads to oscillatory behaviour (when initial concentrations are suit-
ably set). The oscillation means that each of both species periodically changes
its concentration value from the level below the threshold to the level above
the threshold and vice-versa. Moreover, the oscillatory behavior is in this case
kept on for the entire time-live of the cell. LTL properties which guarantee the

oscillatory behaviour for each of the proteins are given in Table 5 as properties
(1) and (2).

= I‘Qy8+(1‘, 9;/:) - TyY
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0¥ < :—: < mazy (G((mg < 0°) = F(xg > 0)) A (G((zg > 0°) = F(za < 02)))

1
by <™ <mazy | 2 (G((w < 0) = Flay, > 6)) A (G((h > 03) = Flay < 0)))

Table 5
Characteristic properties of incoherent feedback loop

4 GeNeSim: Parallel Model Checker for PLDE Models

GENESIM is build on the top of the DIVINE library that offers common func-
tions needed to develop a parallel or distributed enumerative model checker.
The only extension to the library that was necessary, was the extension of the
state generator to a state generator tailored for the specific input provided
by GENESIM GUI [?]. For the structure of GENESIM implementation and
connection to DIVINE see Figure 2.

User =

GeNeSim
DIVInE DiVinE Graphical Interface | R El
ToolSet i L ~_

DiVIinE
ve | GenRegnet

Developer

(library) - | e
Storage [==| Network Generator

Cluster

— [ — | S— | S—
T, e 4 = 24 e 24

4

Fig. 2. How is GENESIM embodied into DIVINE.

4.1 PLDE model representation and state generator

The central component of GeNeSim is the state generator. The hierarchy of
DiVinE state space representation classes is extended with new structures that
represent symbolically the PLDE model in C++. A PLDE model (Genesim
System) is represented as a container of variables which occur in respective
PLDEs. Each state variable contains a set of production rates (may be empty)
and a set of degradation rates. With respect to the mathematical specification
of PLDEs, at least one degradation rate constant must be always defined.
Each rate constant is defined as a container of requlation terms. A regulation
term represents a particular subterm of the equation which is relevant to
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Fig. 3. A qualitative state space and a transition system generated by GeNeSim

the activation and deactivation of the respective reaction (represented by the
relevant production/degradation rate constant). We support two forms of
regulation terms — negative and positive. The positive term is defined as
a direct product of step functions whereas the negative term is defined as
a negation of a product of step functions. Both kinds of regulation terms
allow all possible types of PLDE models to be encoded in GeNeSim. Negative
terms are necessary for modeling of transcription factors which have the form
of multi-protein complexes, as is showed in [19].

The GeNeSim state generator implements the DiVinE methods get_
initial() for determining the initial state of the system and get_succs()
that computes a container of successors of a given state. By these two meth-
ods the implicit representation of the qualitative simulation is implemented.
Such a representation allows integration of GeNeSim with DiVinE distributed
on-the-fly LTL model checking algorithm.

An example of a simulation transition system generated by GeNeSim is
depicted in Fig. 3 (on the right). It represents a qualitative simulation of the
PLDE model of the double-negative loop motif presented in the previous sec-
tion. The information included in the individual states denotes the address of
the domain and the so-called direction set property. The address of each do-
main is given as a vector of discrete concentration levels of respective proteins
in the symbolic concentration space (see Fig. 3). Direction set property (dsp)
expresses the information concerning the potential phases in the respective
domain computed by approximation. On the one hand, the dsp information
is used as a key resource for generating successors of switching domains. On
the other hand, computation of the dsp information requires exploration of
all the potential neighbouring states. Such exploration takes an indispensable
amount of time. Therefore saving of the dsp information into states acceler-
ates generation of the simulation state space. For a particular domain D it

11



AL LAAVINAA L A LAl

can gather the following values:

2, if D represents a steady state,
dsp(D) = { 1, if the set of phases is empty (only if D is switching), (1)

0, otherwise.

The value 1 has sense only for states which represent switching domains.
The empty phase set signalises that the respective switching domain must
be immediately left after it is entered. It symbolises the fact that in such a
domain no substrate can keep its concentration constant.

In general, to minimise the memory needed for allocation of states, we have
decided to save into states only the mentioned information. All other informa-
tion is computed on-the-fly whenever it is needed for state space generation,
and consequently, during a particular analysis.

5 Experiments

6 Conclusions

Results presented in the previous section show that the parallel approach accel-
erates simulation and model-checking of genetic regulatory networks. Average
maximal rate of acceleration achieved by our experiments makes the parallel
analysis 7.5 times faster than the sequential analysis with GNA. In particu-
lar, the parallel approach enables queries for models having up to 10 state
variables to be answered in terms of minutes. Moreover, also larger models
(more than 10 variables), which are not satisfactorily tractable by the explicit
sequential approach, can be still analysed by the implicit parallel approach on
suitably large clusters.

To summarise, our contribution is a demonstration of the use of parallel
model-checking for biological systems. In particular, we provide a translation
of a piecewise-linear model of a genetic regulatory network into a discrete
transition system which serves as an input for the parallel model-checker Di-
VinE. The approach allows for parallel on-the-fly model-checking of larger
networks than is possible by sequential algorithms. The preliminary exper-
iments conducted with the tool confirm good scalability. Though we have
focused on qualitative analysis, the DIVINE tool is also able to analyse some
stochastic and quantitative properties as well. These extensions together with
improvements of the GeNeSim implementation in speeding-up the state space
exploration, and that way reaching practicable results for extremely large net-
works (having around 100 variables), remain for our future work.
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