
FBTC 2007
From Simple Regulatory Motifs to ParallelModel Che
king of Complex Trans
riptionalNetworksJ. Barnat, L. Brim, I. �Cern�a, S. Dra�zan, and D. �Safr�anek 1;2Fa
ulty of Informati
s, Masaryk University, Cze
h Republi
Abstra
tIn re
ent years, the previously redu
tionisti
 style of biologi
al resear
h has turned�rmly towards systemati
 integrative paradigm, the so-
alled systems biology. Inthis novel paradigm, a fun
tionality of a living 
ell is understood as a large set of
omplex bio
hemi
al rea
tions of several kinds running in parallel at di�erent time-s
ales. The 
entral me
hanism whi
h drives every living 
ell is protein synthesis, theso-
alled trans
ription, whi
h is realized a

ording to the geneti
 
ode. There are
omplex regulatory intera
tions that 
ontrol trans
ription of genes to proteins. Ow-ing to their inherent 
omplexity, analysis of dynami
al models of su
h intera
tionsrequires a s
alable 
omputational approa
h. In this paper we employ parallel LTLmodel 
he
king for a 
ase study of sele
ted dynami
 properties of an in silli
o modelof trans
ription in Ba
illus subtilis, a ba
terium living in soil. Moreover, we showthe general fa
t that 
ru
ial LTL properties 
hara
terizing trans
riptional dynami
s
an be inferred from network motifs 
ommonly studied in systems biology.Key words: tans
riptional regulatory networks, dis
retesimulation, parallel LTL model 
he
king, Ba
illus subtilis1 Introdu
tionThe traditional redu
tionisti
 style of biologi
al resear
h is nowadays turningtowards systemati
 integrative paradigm, the so-
alled systems biology. Thereappear plenty of databases of biologi
al knowledge keeping both stru
turaland fun
tional aspe
ts of living organisms. Existen
e of su
h databases allowsbuilding of in sili
o models that predi
t fun
tionality of living 
ells.Ea
h fun
tion of any living 
ell is driven by proteins. Proteins are syn-thesized a

ording to the geneti
 
ode in the pro
ess of trans
ription. Tran-s
ription of genes to proteins is 
ontrolled by 
omplex regulatory intera
tions.1 Email: safranek�fi.muni.
z2 This work has been supported by the FP6 proje
t No. NEST-043235 (EC-MOAN).This paper is ele
troni
ally published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Barnat et al.These intera
tions are driven by spe
i�
 proteins, so-
alled trans
ription fa
-tors, whi
h 
ollaborate on a
tivation (in
rease) or repression (de
rease) ofparti
ular gene trans
ription. For ea
h 
ell type the trans
ription regulationis des
ribed by a trans
riptional regulatory network (TRN) in whi
h nodesrepresent proteins and genes inter
onne
ted by edges denote their mutual in-tera
tion. TRNs make the bottom level of 
omplex biologi
al networks andpathways. Even when taken separately, TRNs of most of pathways 
an bethemselves very large (having around 10s of genes). A s
heme of a TRN isdepi
ted in Figure 1. There is a network of 8 genes from whi
h m proteins(ea
h denoted Xi) is produ
ed. Additionally, the pro
ess of regulation is 
on-trolled by n external signals whi
h determine interfa
e for intera
tion withother fun
tional layers in a 
ell.
Signal n Signal n

X X3 Xm2

Signal 2 Signal 3

DNA

Signal 1

X1
repression

activation

gene 1 gene 2 gene 3 gene 4 gene 6 gene 7 gene 8gene 5Fig. 1. S
heme of a trans
riptional regulatory networkIn order to deal with the 
omplexity of trans
riptional regulatory networks,experimental methods have to be supplemented with mathemati
al modellingand 
omputer-supported analysis. One of the most 
riti
al limitations in ap-plying 
urrent approa
hes to modelling and analysis is their pure s
alability.Large models require powerful 
omputational methods, the hardware infras-tru
ture is available (
lusters, GRID, multi-
ore 
omputers), but the parallel(distributed) algorithms for model analysis are still under development.The most widely-used modelling frameworks for the analysis of the dy-nami
s of TRNs are based on ordinary di�erential equations [30℄ (ODE). Theredu
tion of 
ontinuous models to dis
rete automata by a sequen
e of ap-proximations and abstra
tions allows formal methods for the automated ver-i�
ation of properties of dis
rete transition systems to be applied [9℄. Oneof methods whi
h 
an be employed here is model 
he
king. At the 
ontin-uous level, interesting properties of TRNs 
an be 
hara
terized by 
ertainparts of the intera
tion networks { so-
alled network motifs. Role of networkmotifs in dynami
 behaviour 
an be mathemati
ally analyzed [?℄. However,su
h mathemati
al analysis is very 
ompli
ated and 
annot be done automati-
ally. Therefore, model 
he
king appears to be a suitable tool for algorithmi
alanalysis of ODE models, in parti
ular, their dis
rete abstra
tions. Propertieswhi
h 
an be analysed by model 
he
king in
lude the behaviour spe
i�
 for2



Barnat et al.known network motifs. Re
ent studies on biologi
ally-relevant properties iden-ti�ed the need for both bran
hing-time temporal operators, able to expressmulti-stability properties (rea
hability of several di�erent equilibrium states)([?,?℄), and linear-time temporal operators, able to 
apture the os
illations ofprotein 
on
entrations ([?,?℄) as well as temporal ordering motifs ( [?℄).When dealing with large TRNs, standard model-
he
king te
hniques donot provide a

eptable response times for answering user queries and paral-lel model-
he
king algorithms are required. Owing to dynami
al dependen
esamong state variables, the state-spa
e explosion arises during redu
tion todis
rete automata. Even relatively small ODE models 
ontaining around 15state variables lead to large automata having hundreds of thousands states.However, while substantial work on model-
he
king qualitative as well as quan-titative properties of bio
hemi
al networks has been already a
hieved, to ourbest knowledge, no attempts to use parallel model 
he
kers to analyse 
omplexnetworks are known.
1.1 Our ContributionIn this paper we present a 
ase study of applying parallel model 
he
king toanalysis of trans
riptional regulatory networks using the extension GeNeSim ofthe parallel model-
he
ker DiVinE [1℄. We employ the pie
e-wise aÆne dis
reteabstra
tion method in whi
h di�erential equations of the original ODE modelare redu
ed to a system of pie
e-wise linear di�erantial equations (PLDE) asproposed in [19℄. Our distributed state spa
e generator is based on the respe
-tive qualitative simulation method implemented (as a sequential algorithm)in Geneti
 Network Analyser (GNA) [6℄.The DiVinE distributed state spa
e generator allows on-the-
y generationof the transition graph giving thus in many 
ir
umstan
es the possibility toanalyse properties of even larger networks as opposed to the expli
it represen-tation as used in GNA simulator. This allows to 
he
k biologi
ally interestingliveness properties on larger models than is possible with traditional sequentialapproa
h. In this 
ase study we demonstrate that parallel model 
he
king 
anextend the possibilities of qualititative analysis of Ba
illus Subtilis ba
teriapresented in [16℄.From our experien
es on 
ollaboration with biologists we have found itdiÆ
ult to fully take advantage of the strong power of temporal logi
. It ismainly be
ause of the fa
t that thinking of biologists, based on experiments,prin
ipally di�ers from that of 
omputer s
ientists. At present, it is far fromreality that a temporal logi
 formalism 
an be dire
tly used by biologists. Tothis end, we try to reveal biologi
ally interesting LTL properties from thenotion of network motifs whi
h is well known in the biologi
al 
ommunity.3



Barnat et al.1.2 Related WorkThe use of model 
he
king for the analysis of biologi
al networks has attra
tedmu
h attention [9,32℄. The individual approa
hes di�er in models and model-
he
king tools used. Our approa
h is based on qualitative hybrid models asproposed by [19℄ and implemented in the GNA [17℄. Besides GNA there aresome other sequential approa
hes for model-
he
king of ODE models. TheBIOCHAM workben
h [12℄ provides an interfa
e to symboli
 model 
he
kerNuSMV and the enumerative CADP veri�
ation toolbox; the interfa
e is basedon a simple language for representing bio
hemi
al networks. The workben
hprovides me
hanisms to reason about rea
hability, existen
e of partially de-s
ribed stable states, and some types of temporal behaviour. Another tool isthe Robust Veri�
ation of Gene Networks (RoVerGeNe) [2℄. To the best of ourknowledge, none of the tools mentioned above employ the parallel approa
h.This work extends our previous work [?℄ in two dire
tions. At �rst, weintrodu
e a pool of biologi
ally relevant LTL properties whi
h are systemati-
ally derived from trans
riptional motifs whi
h frequently appear in biologi
aldatabases [?,?℄. At se
ond, the experiments of the Ba
illus Subtilis 
ase studypresented in this paper are aimed at demonstrating how the motif-spe
i�
properties 
an be 
he
ked on 
omplex networks that 
ombine several motifstogether.2 PreliminariesBefore we start with stating the properties of individual trans
riptional mo-tifs, we brie
y explain basi
 prin
iples of PLDE systems and their qualitativesimulation. The pre
ise de�nition of these prin
iples is given in [19℄. Finally,we also give a syntax of the LTL logi
 used in this paper.2.1 PLDE SystemsAssume we �x a network with n proteins. Let the 
on
entration of ith proteinin a time instant t, where i 2 f1; :::; ng, be denoted by the variable xi(t). Therespe
tive PLDE system 
onsists of a set of n equations. For ea
h proteinthere is an equation des
ribing how its 
on
entration 
hanges in time:dxidt =Xl2L �il%il(hx1; :::; xni)� 
ixiwhere� L is a �nite index set.� For ea
h i 2 f1; ::; ng; l 2 L �il is a 
onstant expressing the rate of proteinprodu
tion.� %il : Rn ! f0; 1g is a dis
rete input fun
tion.4
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i is a 
onstant expressing the rate of exponential de
ay of protein i.In general, ea
h equation of the system 
onsists of two terms { the positiveprodu
tion term and the negative degradation term. The latter term is natu-rally nonzero and des
ribes instability of proteins among other spe
ies in the
ell. The former term des
ribes the trans
riptional regulation, in parti
ular,the intensity of protein produ
tion w.r.t. the 
urrent 
onditions in the 
ell.More pre
isely, the maximal produ
tion is given by the produ
tion 
onstant� and it is additionally regulated by the input fun
tion %.The input fun
tion % in general depends on the 
urrent 
on
entration ofall the proteins in the system. In pie
e-wise linear approximation the (mul-tidimensional) input fun
tion has a dis
rete range and is given by a produ
tof elementary (one dimensional) step fun
tions. These step fun
tions qualita-tively 
hara
terize edges in TRNs, in parti
ular, the trans
riptional a
tivationor repression of the target gene by a 
ertain trans
riptional fa
tor w.r.t. itsgiven threshold 
on
entration. The input fun
tion has the form:%il(hx1; :::; xni) = nYj=1 s�(xj; �ij)where s� : R ! f0; 1g, � 2 f+;�g, denotes a so-
alled step fun
tion de�nedfor the protein 
on
entration xj and its threshold �ij by the expression:a
tivation : s+(xj; �ij) = 8<: 1; if xj > �ij;0; if xj < �ij;repression : s�(xj; �ij) = 1� s+(xj; �ij)2.2 Qualitative SimulationFor given initial 
onditions (initial 
on
entrations of protein spe
ies), the possi-ble evolution of protein 
on
entrations in time 
an be predi
ted by simulation.The algorithm of qualitative simulation for PLDE models relies on the fa
tthat input fun
tions given as produ
ts of step fun
tions have dis
rete ranges.Up-to this approximation, the 
on
entration values of proteins are dis
retelyabstra
ted into several open intervals between respe
tive thresholds, and ad-ditionally, the dis
rete points equal just to the threshold values.For ea
h variable there is a �nite number of regulation 
on�gurations de-termined by parti
ular values of the step fun
tions. In ea
h su
h 
on�gurationthe trans
riptional regulation tends towards an equilibrium state (a so-
alledlo
al equilibrium) determined for some L0 � L by the equation:dxidt = 0, xi = Pl2L0 �il
i5



Barnat et al.If we 
onsider a variable xi then for ea
h parti
ular 
on�guration of thebinary values returned by step fun
tions appearing in the respe
tive equationthe equilibrium 
on
entration value is given just by the expression above. Inorder to simulate the dynami
s of the PLDE system, we set for ea
h variablethe inequality 
ondition whi
h mutually relates all the thresholds de�ned forthat variable, and moreover, we also put ea
h possible equilibrium 
on
entra-tion value between some two su

seeding thresholds.Evolution of protein 
on
entrations starting from the given initial values isthen given by the state transition system in whi
h ea
h state is 
hara
terizedby the ve
tor of 
urrent dis
rete 
on
entration levels of the proteins (openintervals or just the thresholds). Be
ause ea
h protein is naturally degraded(
i is always nonzero) values of ea
h variable are bounded by some maximallevel and hen
e the system has �nite number of states [19℄.The outgoing transitions are 
omputed di�erently for states where all vari-ables are set to values approximated by an open interval (so-
alled regulatorystates) and for states where at least one variable has a value equal to somethreshold (so-
alled swit
hing states). Ea
h transition means visiting someof the su

eeding states in the global phase spa
e. In the former 
ase, thetransitions are determined dire
tly by the dire
tion ve
tor leading from the
urrent state to its respe
tive lo
al equilibrium state. In the latter 
ase, thedire
tion ve
tor is 
omputed by an intri
ated algorithm whi
h relies on analy-sis of the system dynami
s in neighbouring states. In general, time 
omplexityof 
omputing outgoing transitions for a given state is exponential in numberof variables in the system. This is an imposition due to the a

ura
y of theoverapproximative simulation and also a motivation for employing the parallelmodel 
he
king method for analysis of PLDE systems.3 PLDE and LTL Approa
h to Trans
riptional MotifsIn this se
tion, we 
hara
terize the basi
 trans
riptional motifs modeled asPLDE systems. For ea
h motif we state a set of LTL properties whi
h des
ribequalitatively its signi�
ant dynami
al properties. We fo
us on motifs thatembody qualitatively ex
eptional properties, in parti
ular, we do not in
ludemotifs that manipulate timing aspe
ts of trans
riptional intera
tions (e.g.,single input modules, feedforward loops,. . . [?℄).3.1 Autoregulation MotifsAutoregulation is the most simplest motif whi
h appears very frequently inall TRNs [?℄. It deals with one variable (one protein) whi
h regulates itsprodu
tion from its own gene. Su
h a regulation determines the resultingamount of the protein 
on
entration whi
h is a
hieved when the system rea
hesa global equilibrium state. In parti
ular, the regulation is 
ontrolled by a stepfun
tion whi
h depending on the 
urrent amount of the protein 
on
entration6



Barnat et al.returns its in
rement. Depending on the 
hara
ter of the step fun
tion thereare two types of autoregulation { negative and positive.3.1.1 Negative AutoregulationIn the 
ase of negative autoregulation, the input fun
tion is given by a singlestep fun
tion denoting repression. In parti
ular, this means that the proteinrepresses produ
tion of its own. The PLDE system 
onsists of a single equationhaving the following form: dxdt = �s�(x; �)� 
xThe only lo
al equilibrium state of this system is 
hara
terised by the
on
entration value �
 . By positioning this value above or below the threshold,we get di�erent dynami
 behaviour. In Table 1 there is given a 
hara
teristi
LTL property for ea
h of these positions.The �rst line shows the fa
t that the produ
tion rate is relatively low andhen
e the autoregulation does not a�e
t the trans
ription at the 
on
entrationlevel below the threshold, whereas for the values above the threshold the au-toregulation swit
hes o� the produ
tion. Both aspe
ts lead to the observationthat this autoregulation motif for
es the resulting global equilibrium state toappear at levels below the threshold.0 < �
 < � FG(x � �)� < �
 < max FG(x = �)Table 1Chara
teristi
 Properties of Negative AutoregulationThe se
ond line represents the situation when the lo
al equilibrium 
on-
entration is set to a higher value than the threshold. In this 
ase, the au-toregulation a�e
ts all 
on
entration levels and leads the system to the globalequilibrium in whi
h the 
on
entration value is equal just to the thresholdlevel.3.1.2 Positive AutoregulationPositive autoregulation is determined by a single a
tivation step fun
tion.Here the protein at 
ertain 
on
entration level a
tivates its own produ
tion.The respe
tive PLDE system is analogous to the previous one:dxdt = �s+(x; �)� 
xSimilarly to the 
ase of negative autoregulation there are two di�erentlo
al equilibrium positions. They are listed in Table 2. In the �rst 
ase,the behaviour is just the same as in the previous 
ase. However, the 
asewhen the lo
al equilibrium 
on
entration is set above the threshold behaves7



Barnat et al.di�erently. In parti
ular, a kind of bistability arises. In other words, thereare two di�erent global equilibrium states to whi
h the system 
an lead. Insu
h a setting, the positive autoregulation behaves like a swit
h that desideswhether the system stabilizes at the maximal 
on
entration level or at the zerolevel. Both situations are possible. The LTL property (1) des
ribes existen
eof the two global equilibrium states | a ne
essary and suÆ
ient 
ondition ofbistability. In PLDE approximation, both states are rea
hable from a singlespe
i�
 qualitative state { a so-
alled bistable swit
h. However, existen
e ofsu
h a state 
annot be dire
tly expressed in LTL. Therefore we state at theleast a formula (2) whi
h 
ontradi
ts the existen
e of a bistable swit
h.0 < �
 < � FG(x � �)� < �
 < max 1. ((x < �))G(x < �)) ^ ((x > �))G(x > �))2. (x = �)) (GF(x > �) ^GF(x < �))Table 2Chara
teristi
 Properties of Positive Autoregulation3.2 Feedba
k Loop MotifsAnother signi�
ant 
athegory of trans
riptional motifs is represented by agroup of at least two di�erent trans
riptional fa
tors whi
h mutually intera
tin a 
ir
ular manner. In parti
ular, the respe
tive network is a 
y
li
 graph.Su
h motifs, depending on the type of individual intera
tions in the 
ir
le,present behavior similar to the autoregulation (imposing stability or multi-stability), or they 
an lead to 
on
entration os
ilations [?℄ (e.g., the well-known 
yr
adian rhythm).In this se
tion we state the properties of the most signi�
ant representantsof feedba
k loops, in parti
ular, minimal loops made of just two proteins.3.2.1 Double-negative feedba
k loopIn this kind of a feedba
k loop ea
h of the two proteins represses the other one.If we denote the proteins X and Y , respe
tively, the relevant PLDE system isde�ned by two equations of the following form:dxdt = �xs�(y; �xy)� 
xx dydt = �ys�(x; �yx)� 
yy�yx < �x
x < maxx 1. ((x > �yx ^ y < �xy ) ) G(x > �yx ^ y < �xy )) ^ ((x < �yx ^ y > �xy ) ) G(x < �yx ^ y > �xy ))�xy < �y
y < maxy 2. (x = �yx ^ y = �xy ) ) ((GF(x > �yx) ^GF(x < �yx)) _ (GF(y > �xy ) ^GF(y < �yx)))Table 3Chara
teristi
 properties of double-negative feedba
k loopFrom the possible 4 di�erent lo
al equilibria 
on�gurations we 
onsiderthe most representative one, given in Table 3. In su
h a setting, the system is8



Barnat et al.bistable, and moreover, there is a bistable swit
h in the state 
hara
terised bythe property that 
on
entration value of ea
h protein is equal to the respe
-tive threshold. The formula (1) states the property that two di�erent globalequilibrium states exist in the system. Similarly as in the 
ase of bistabilityin positive autoregulation, the property of bistable swit
h is not expressiblein LTL. However, we state a formula (2) whi
h involves just 
ounterexamplesof bistable swit
h.3.2.2 Double-positive feedba
k loopThis kind of two-protein feedba
k loop has the similar properties as the neg-ative loop. The PLDE system di�ers only in signs of step fun
tions used:dxdt = �xs+(y; �xy)� 
xx dydt = �ys+(x; �yx)� 
yyThe most representative 
on�guration and the respe
tive bistability prop-erties are stated in Table 4. The property (1) di�ers from the respe
tive prop-erty of the negative loop only in atomi
 propositions. The bistable swit
h
ontradi
tion (2) is just the same formula.�yx < �x
x < maxx 1. ((x > �yx ^ y > �xy ) ) G(x > �yx ^ y > �xy )) ^ ((x < �yx ^ y < �xy ) ) G(x < �yx ^ y < �xy ))�xy < �y
y < maxy 2. (x = �yx ^ y = �xy ) ) ((GF(x > �yx) ^GF(x < �yx)) _ (GF(y > �xy ) ^GF(y < �yx)))Table 4Chara
teristi
 properties of double-positive feedba
k loop3.2.3 In
oherent feedba
k loopThe most interesting two-protein feedba
k motif is based on 
ir
ular intera
-tion in whi
h the �rst of the two proteins a
ts as a repressor of the se
ondprotein produ
tion while the se
ond protein a
ts as an a
tivator of the �rstprotein (or vi
e-versa). Formally, the 
orresponding PLDE system for su
h asituation 
an be of the following form:dxdt = �xs�(y; �xy)� 
xx dydt = �ys+(x; �yx)� 
yyThe representative 
on�guration of lo
al equilibria is determined by thesame inequalities as in the 
ase of the previous loop motifs. In su
h a situation,the motif leads to os
illatory behaviour (when initial 
on
entrations are suit-ably set). The os
illation means that ea
h of both spe
ies periodi
ally 
hangesits 
on
entration value from the level below the threshold to the level abovethe threshold and vi
e-versa. Moreover, the os
illatory behavior is in this 
asekept on for the entire time-live of the 
ell. LTL properties whi
h guarantee theos
illatory behaviour for ea
h of the proteins are given in Table 5 as properties(1) and (2). 9



Barnat et al.�yx < �x
x < maxx 1. (G((xa � �ba)) F(xa > �ba))) ^ (G((xa � �ba)) F(xa < �ba)))�xy < �y
y < maxy 2. (G((xb � �ab )) F(xb > �ab ))) ^ (G((xb � �ab )) F(xb < �ab )))Table 5Chara
teristi
 properties of in
oherent feedba
k loop4 GeNeSim: Parallel Model Che
ker for PLDE ModelsGeNeSim is build on the top of the DiVinE library that o�ers 
ommon fun
-tions needed to develop a parallel or distributed enumerative model 
he
ker.The only extension to the library that was ne
essary, was the extension of thestate generator to a state generator tailored for the spe
i�
 input providedby GeNeSim GUI [?℄. For the stru
ture of GeNeSim implementation and
onne
tion to DiVinE see Figure 2.
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��Fig. 2. How is GeNeSim embodied into DiVinE.4.1 PLDE model representation and state generatorThe 
entral 
omponent of GeNeSim is the state generator. The hierar
hy ofDiVinE state spa
e representation 
lasses is extended with new stru
tures thatrepresent symboli
ally the PLDE model in C++. A PLDE model (GenesimSystem) is represented as a 
ontainer of variables whi
h o

ur in respe
tivePLDEs. Ea
h state variable 
ontains a set of produ
tion rates (may be empty)and a set of degradation rates. With respe
t to the mathemati
al spe
i�
ationof PLDEs, at least one degradation rate 
onstant must be always de�ned.Ea
h rate 
onstant is de�ned as a 
ontainer of regulation terms. A regulationterm represents a parti
ular subterm of the equation whi
h is relevant to10
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1 3 4 52

1

2

3
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[dsp:1]

[3|4]
[dsp:0]

[2|4]
[dsp:1]

[1|4]
[dsp:2]Fig. 3. A qualitative state spa
e and a transition system generated by GeNeSim

the a
tivation and dea
tivation of the respe
tive rea
tion (represented by therelevant produ
tion/degradation rate 
onstant). We support two forms ofregulation terms { negative and positive. The positive term is de�ned asa dire
t produ
t of step fun
tions whereas the negative term is de�ned asa negation of a produ
t of step fun
tions. Both kinds of regulation termsallow all possible types of PLDE models to be en
oded in GeNeSim. Negativeterms are ne
essary for modeling of trans
ription fa
tors whi
h have the formof multi-protein 
omplexes, as is showed in [19℄.The GeNeSim state generator implements the DiVinE methods getinitial() for determining the initial state of the system and get su

s()that 
omputes a 
ontainer of su

essors of a given state. By these two meth-ods the impli
it representation of the qualitative simulation is implemented.Su
h a representation allows integration of GeNeSim with DiVinE distributedon-the-
y LTL model 
he
king algorithm.An example of a simulation transition system generated by GeNeSim isdepi
ted in Fig. 3 (on the right). It represents a qualitative simulation of thePLDE model of the double-negative loop motif presented in the previous se
-tion. The information in
luded in the individual states denotes the address ofthe domain and the so-
alled dire
tion set property. The address of ea
h do-main is given as a ve
tor of dis
rete 
on
entration levels of respe
tive proteinsin the symboli
 
on
entration spa
e (see Fig. 3). Dire
tion set property (dsp)expresses the information 
on
erning the potential phases in the respe
tivedomain 
omputed by approximation. On the one hand, the dsp informationis used as a key resour
e for generating su

essors of swit
hing domains. Onthe other hand, 
omputation of the dsp information requires exploration ofall the potential neighbouring states. Su
h exploration takes an indispensableamount of time. Therefore saving of the dsp information into states a

eler-ates generation of the simulation state spa
e. For a parti
ular domain D it11
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an gather the following values:dsp(D) = 8>>><>>>: 2; if D represents a steady state;1; if the set of phases is empty (only if D is swit
hing);0; otherwise: (1)
The value 1 has sense only for states whi
h represent swit
hing domains.The empty phase set signalises that the respe
tive swit
hing domain mustbe immediately left after it is entered. It symbolises the fa
t that in su
h adomain no substrate 
an keep its 
on
entration 
onstant.In general, to minimise the memory needed for allo
ation of states, we havede
ided to save into states only the mentioned information. All other informa-tion is 
omputed on-the-
y whenever it is needed for state spa
e generation,and 
onsequently, during a parti
ular analysis.5 Experiments6 Con
lusionsResults presented in the previous se
tion show that the parallel approa
h a

el-erates simulation and model-
he
king of geneti
 regulatory networks. Averagemaximal rate of a

eleration a
hieved by our experiments makes the parallelanalysis 7.5 times faster than the sequential analysis with GNA. In parti
u-lar, the parallel approa
h enables queries for models having up to 10 statevariables to be answered in terms of minutes. Moreover, also larger models(more than 10 variables), whi
h are not satisfa
torily tra
table by the expli
itsequential approa
h, 
an be still analysed by the impli
it parallel approa
h onsuitably large 
lusters.To summarise, our 
ontribution is a demonstration of the use of parallelmodel-
he
king for biologi
al systems. In parti
ular, we provide a translationof a pie
ewise-linear model of a geneti
 regulatory network into a dis
retetransition system whi
h serves as an input for the parallel model-
he
ker Di-VinE. The approa
h allows for parallel on-the-
y model-
he
king of largernetworks than is possible by sequential algorithms. The preliminary exper-iments 
ondu
ted with the tool 
on�rm good s
alability. Though we havefo
used on qualitative analysis, the DiVinE tool is also able to analyse somesto
hasti
 and quantitative properties as well. These extensions together withimprovements of the GeNeSim implementation in speeding-up the state spa
eexploration, and that way rea
hing pra
ti
able results for extremely large net-works (having around 100 variables), remain for our future work.12
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