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From Simple Regulatory Motifs to ParallelModel Cheking of Complex TransriptionalNetworksJ. Barnat, L. Brim, I. �Cern�a, S. Dra�zan, and D. �Safr�anek 1;2Faulty of Informatis, Masaryk University, Czeh RepubliAbstratIn reent years, the previously redutionisti style of biologial researh has turned�rmly towards systemati integrative paradigm, the so-alled systems biology. Inthis novel paradigm, a funtionality of a living ell is understood as a large set ofomplex biohemial reations of several kinds running in parallel at di�erent time-sales. The entral mehanism whih drives every living ell is protein synthesis, theso-alled transription, whih is realized aording to the geneti ode. There areomplex regulatory interations that ontrol transription of genes to proteins. Ow-ing to their inherent omplexity, analysis of dynamial models of suh interationsrequires a salable omputational approah. In this paper we employ parallel LTLmodel heking for a ase study of seleted dynami properties of an in sillio modelof transription in Baillus subtilis, a baterium living in soil. Moreover, we showthe general fat that ruial LTL properties haraterizing transriptional dynamisan be inferred from network motifs ommonly studied in systems biology.Key words: tansriptional regulatory networks, disretesimulation, parallel LTL model heking, Baillus subtilis1 IntrodutionThe traditional redutionisti style of biologial researh is nowadays turningtowards systemati integrative paradigm, the so-alled systems biology. Thereappear plenty of databases of biologial knowledge keeping both struturaland funtional aspets of living organisms. Existene of suh databases allowsbuilding of in silio models that predit funtionality of living ells.Eah funtion of any living ell is driven by proteins. Proteins are syn-thesized aording to the geneti ode in the proess of transription. Tran-sription of genes to proteins is ontrolled by omplex regulatory interations.1 Email: safranek�fi.muni.z2 This work has been supported by the FP6 projet No. NEST-043235 (EC-MOAN).This paper is eletronially published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Barnat et al.These interations are driven by spei� proteins, so-alled transription fa-tors, whih ollaborate on ativation (inrease) or repression (derease) ofpartiular gene transription. For eah ell type the transription regulationis desribed by a transriptional regulatory network (TRN) in whih nodesrepresent proteins and genes interonneted by edges denote their mutual in-teration. TRNs make the bottom level of omplex biologial networks andpathways. Even when taken separately, TRNs of most of pathways an bethemselves very large (having around 10s of genes). A sheme of a TRN isdepited in Figure 1. There is a network of 8 genes from whih m proteins(eah denoted Xi) is produed. Additionally, the proess of regulation is on-trolled by n external signals whih determine interfae for interation withother funtional layers in a ell.
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gene 1 gene 2 gene 3 gene 4 gene 6 gene 7 gene 8gene 5Fig. 1. Sheme of a transriptional regulatory networkIn order to deal with the omplexity of transriptional regulatory networks,experimental methods have to be supplemented with mathematial modellingand omputer-supported analysis. One of the most ritial limitations in ap-plying urrent approahes to modelling and analysis is their pure salability.Large models require powerful omputational methods, the hardware infras-truture is available (lusters, GRID, multi-ore omputers), but the parallel(distributed) algorithms for model analysis are still under development.The most widely-used modelling frameworks for the analysis of the dy-namis of TRNs are based on ordinary di�erential equations [30℄ (ODE). Theredution of ontinuous models to disrete automata by a sequene of ap-proximations and abstrations allows formal methods for the automated ver-i�ation of properties of disrete transition systems to be applied [9℄. Oneof methods whih an be employed here is model heking. At the ontin-uous level, interesting properties of TRNs an be haraterized by ertainparts of the interation networks { so-alled network motifs. Role of networkmotifs in dynami behaviour an be mathematially analyzed [?℄. However,suh mathematial analysis is very ompliated and annot be done automati-ally. Therefore, model heking appears to be a suitable tool for algorithmialanalysis of ODE models, in partiular, their disrete abstrations. Propertieswhih an be analysed by model heking inlude the behaviour spei� for2



Barnat et al.known network motifs. Reent studies on biologially-relevant properties iden-ti�ed the need for both branhing-time temporal operators, able to expressmulti-stability properties (reahability of several di�erent equilibrium states)([?,?℄), and linear-time temporal operators, able to apture the osillations ofprotein onentrations ([?,?℄) as well as temporal ordering motifs ( [?℄).When dealing with large TRNs, standard model-heking tehniques donot provide aeptable response times for answering user queries and paral-lel model-heking algorithms are required. Owing to dynamial dependenesamong state variables, the state-spae explosion arises during redution todisrete automata. Even relatively small ODE models ontaining around 15state variables lead to large automata having hundreds of thousands states.However, while substantial work on model-heking qualitative as well as quan-titative properties of biohemial networks has been already ahieved, to ourbest knowledge, no attempts to use parallel model hekers to analyse omplexnetworks are known.
1.1 Our ContributionIn this paper we present a ase study of applying parallel model heking toanalysis of transriptional regulatory networks using the extension GeNeSim ofthe parallel model-heker DiVinE [1℄. We employ the piee-wise aÆne disreteabstration method in whih di�erential equations of the original ODE modelare redued to a system of piee-wise linear di�erantial equations (PLDE) asproposed in [19℄. Our distributed state spae generator is based on the respe-tive qualitative simulation method implemented (as a sequential algorithm)in Geneti Network Analyser (GNA) [6℄.The DiVinE distributed state spae generator allows on-the-y generationof the transition graph giving thus in many irumstanes the possibility toanalyse properties of even larger networks as opposed to the expliit represen-tation as used in GNA simulator. This allows to hek biologially interestingliveness properties on larger models than is possible with traditional sequentialapproah. In this ase study we demonstrate that parallel model heking anextend the possibilities of qualititative analysis of Baillus Subtilis bateriapresented in [16℄.From our experienes on ollaboration with biologists we have found itdiÆult to fully take advantage of the strong power of temporal logi. It ismainly beause of the fat that thinking of biologists, based on experiments,prinipally di�ers from that of omputer sientists. At present, it is far fromreality that a temporal logi formalism an be diretly used by biologists. Tothis end, we try to reveal biologially interesting LTL properties from thenotion of network motifs whih is well known in the biologial ommunity.3



Barnat et al.1.2 Related WorkThe use of model heking for the analysis of biologial networks has attratedmuh attention [9,32℄. The individual approahes di�er in models and model-heking tools used. Our approah is based on qualitative hybrid models asproposed by [19℄ and implemented in the GNA [17℄. Besides GNA there aresome other sequential approahes for model-heking of ODE models. TheBIOCHAM workbenh [12℄ provides an interfae to symboli model hekerNuSMV and the enumerative CADP veri�ation toolbox; the interfae is basedon a simple language for representing biohemial networks. The workbenhprovides mehanisms to reason about reahability, existene of partially de-sribed stable states, and some types of temporal behaviour. Another tool isthe Robust Veri�ation of Gene Networks (RoVerGeNe) [2℄. To the best of ourknowledge, none of the tools mentioned above employ the parallel approah.This work extends our previous work [?℄ in two diretions. At �rst, weintrodue a pool of biologially relevant LTL properties whih are systemati-ally derived from transriptional motifs whih frequently appear in biologialdatabases [?,?℄. At seond, the experiments of the Baillus Subtilis ase studypresented in this paper are aimed at demonstrating how the motif-spei�properties an be heked on omplex networks that ombine several motifstogether.2 PreliminariesBefore we start with stating the properties of individual transriptional mo-tifs, we briey explain basi priniples of PLDE systems and their qualitativesimulation. The preise de�nition of these priniples is given in [19℄. Finally,we also give a syntax of the LTL logi used in this paper.2.1 PLDE SystemsAssume we �x a network with n proteins. Let the onentration of ith proteinin a time instant t, where i 2 f1; :::; ng, be denoted by the variable xi(t). Therespetive PLDE system onsists of a set of n equations. For eah proteinthere is an equation desribing how its onentration hanges in time:dxidt =Xl2L �il%il(hx1; :::; xni)� ixiwhere� L is a �nite index set.� For eah i 2 f1; ::; ng; l 2 L �il is a onstant expressing the rate of proteinprodution.� %il : Rn ! f0; 1g is a disrete input funtion.4



Barnat et al.� i is a onstant expressing the rate of exponential deay of protein i.In general, eah equation of the system onsists of two terms { the positiveprodution term and the negative degradation term. The latter term is natu-rally nonzero and desribes instability of proteins among other speies in theell. The former term desribes the transriptional regulation, in partiular,the intensity of protein prodution w.r.t. the urrent onditions in the ell.More preisely, the maximal prodution is given by the prodution onstant� and it is additionally regulated by the input funtion %.The input funtion % in general depends on the urrent onentration ofall the proteins in the system. In piee-wise linear approximation the (mul-tidimensional) input funtion has a disrete range and is given by a produtof elementary (one dimensional) step funtions. These step funtions qualita-tively haraterize edges in TRNs, in partiular, the transriptional ativationor repression of the target gene by a ertain transriptional fator w.r.t. itsgiven threshold onentration. The input funtion has the form:%il(hx1; :::; xni) = nYj=1 s�(xj; �ij)where s� : R ! f0; 1g, � 2 f+;�g, denotes a so-alled step funtion de�nedfor the protein onentration xj and its threshold �ij by the expression:ativation : s+(xj; �ij) = 8<: 1; if xj > �ij;0; if xj < �ij;repression : s�(xj; �ij) = 1� s+(xj; �ij)2.2 Qualitative SimulationFor given initial onditions (initial onentrations of protein speies), the possi-ble evolution of protein onentrations in time an be predited by simulation.The algorithm of qualitative simulation for PLDE models relies on the fatthat input funtions given as produts of step funtions have disrete ranges.Up-to this approximation, the onentration values of proteins are disretelyabstrated into several open intervals between respetive thresholds, and ad-ditionally, the disrete points equal just to the threshold values.For eah variable there is a �nite number of regulation on�gurations de-termined by partiular values of the step funtions. In eah suh on�gurationthe transriptional regulation tends towards an equilibrium state (a so-alledloal equilibrium) determined for some L0 � L by the equation:dxidt = 0, xi = Pl2L0 �ili5



Barnat et al.If we onsider a variable xi then for eah partiular on�guration of thebinary values returned by step funtions appearing in the respetive equationthe equilibrium onentration value is given just by the expression above. Inorder to simulate the dynamis of the PLDE system, we set for eah variablethe inequality ondition whih mutually relates all the thresholds de�ned forthat variable, and moreover, we also put eah possible equilibrium onentra-tion value between some two suseeding thresholds.Evolution of protein onentrations starting from the given initial values isthen given by the state transition system in whih eah state is haraterizedby the vetor of urrent disrete onentration levels of the proteins (openintervals or just the thresholds). Beause eah protein is naturally degraded(i is always nonzero) values of eah variable are bounded by some maximallevel and hene the system has �nite number of states [19℄.The outgoing transitions are omputed di�erently for states where all vari-ables are set to values approximated by an open interval (so-alled regulatorystates) and for states where at least one variable has a value equal to somethreshold (so-alled swithing states). Eah transition means visiting someof the sueeding states in the global phase spae. In the former ase, thetransitions are determined diretly by the diretion vetor leading from theurrent state to its respetive loal equilibrium state. In the latter ase, thediretion vetor is omputed by an intriated algorithm whih relies on analy-sis of the system dynamis in neighbouring states. In general, time omplexityof omputing outgoing transitions for a given state is exponential in numberof variables in the system. This is an imposition due to the auray of theoverapproximative simulation and also a motivation for employing the parallelmodel heking method for analysis of PLDE systems.3 PLDE and LTL Approah to Transriptional MotifsIn this setion, we haraterize the basi transriptional motifs modeled asPLDE systems. For eah motif we state a set of LTL properties whih desribequalitatively its signi�ant dynamial properties. We fous on motifs thatembody qualitatively exeptional properties, in partiular, we do not inludemotifs that manipulate timing aspets of transriptional interations (e.g.,single input modules, feedforward loops,. . . [?℄).3.1 Autoregulation MotifsAutoregulation is the most simplest motif whih appears very frequently inall TRNs [?℄. It deals with one variable (one protein) whih regulates itsprodution from its own gene. Suh a regulation determines the resultingamount of the protein onentration whih is ahieved when the system reahesa global equilibrium state. In partiular, the regulation is ontrolled by a stepfuntion whih depending on the urrent amount of the protein onentration6



Barnat et al.returns its inrement. Depending on the harater of the step funtion thereare two types of autoregulation { negative and positive.3.1.1 Negative AutoregulationIn the ase of negative autoregulation, the input funtion is given by a singlestep funtion denoting repression. In partiular, this means that the proteinrepresses prodution of its own. The PLDE system onsists of a single equationhaving the following form: dxdt = �s�(x; �)� xThe only loal equilibrium state of this system is haraterised by theonentration value � . By positioning this value above or below the threshold,we get di�erent dynami behaviour. In Table 1 there is given a harateristiLTL property for eah of these positions.The �rst line shows the fat that the prodution rate is relatively low andhene the autoregulation does not a�et the transription at the onentrationlevel below the threshold, whereas for the values above the threshold the au-toregulation swithes o� the prodution. Both aspets lead to the observationthat this autoregulation motif fores the resulting global equilibrium state toappear at levels below the threshold.0 < � < � FG(x � �)� < � < max FG(x = �)Table 1Charateristi Properties of Negative AutoregulationThe seond line represents the situation when the loal equilibrium on-entration is set to a higher value than the threshold. In this ase, the au-toregulation a�ets all onentration levels and leads the system to the globalequilibrium in whih the onentration value is equal just to the thresholdlevel.3.1.2 Positive AutoregulationPositive autoregulation is determined by a single ativation step funtion.Here the protein at ertain onentration level ativates its own prodution.The respetive PLDE system is analogous to the previous one:dxdt = �s+(x; �)� xSimilarly to the ase of negative autoregulation there are two di�erentloal equilibrium positions. They are listed in Table 2. In the �rst ase,the behaviour is just the same as in the previous ase. However, the asewhen the loal equilibrium onentration is set above the threshold behaves7



Barnat et al.di�erently. In partiular, a kind of bistability arises. In other words, thereare two di�erent global equilibrium states to whih the system an lead. Insuh a setting, the positive autoregulation behaves like a swith that desideswhether the system stabilizes at the maximal onentration level or at the zerolevel. Both situations are possible. The LTL property (1) desribes existeneof the two global equilibrium states | a neessary and suÆient ondition ofbistability. In PLDE approximation, both states are reahable from a singlespei� qualitative state { a so-alled bistable swith. However, existene ofsuh a state annot be diretly expressed in LTL. Therefore we state at theleast a formula (2) whih ontradits the existene of a bistable swith.0 < � < � FG(x � �)� < � < max 1. ((x < �))G(x < �)) ^ ((x > �))G(x > �))2. (x = �)) (GF(x > �) ^GF(x < �))Table 2Charateristi Properties of Positive Autoregulation3.2 Feedbak Loop MotifsAnother signi�ant athegory of transriptional motifs is represented by agroup of at least two di�erent transriptional fators whih mutually interatin a irular manner. In partiular, the respetive network is a yli graph.Suh motifs, depending on the type of individual interations in the irle,present behavior similar to the autoregulation (imposing stability or multi-stability), or they an lead to onentration osilations [?℄ (e.g., the well-known yradian rhythm).In this setion we state the properties of the most signi�ant representantsof feedbak loops, in partiular, minimal loops made of just two proteins.3.2.1 Double-negative feedbak loopIn this kind of a feedbak loop eah of the two proteins represses the other one.If we denote the proteins X and Y , respetively, the relevant PLDE system isde�ned by two equations of the following form:dxdt = �xs�(y; �xy)� xx dydt = �ys�(x; �yx)� yy�yx < �xx < maxx 1. ((x > �yx ^ y < �xy ) ) G(x > �yx ^ y < �xy )) ^ ((x < �yx ^ y > �xy ) ) G(x < �yx ^ y > �xy ))�xy < �yy < maxy 2. (x = �yx ^ y = �xy ) ) ((GF(x > �yx) ^GF(x < �yx)) _ (GF(y > �xy ) ^GF(y < �yx)))Table 3Charateristi properties of double-negative feedbak loopFrom the possible 4 di�erent loal equilibria on�gurations we onsiderthe most representative one, given in Table 3. In suh a setting, the system is8



Barnat et al.bistable, and moreover, there is a bistable swith in the state haraterised bythe property that onentration value of eah protein is equal to the respe-tive threshold. The formula (1) states the property that two di�erent globalequilibrium states exist in the system. Similarly as in the ase of bistabilityin positive autoregulation, the property of bistable swith is not expressiblein LTL. However, we state a formula (2) whih involves just ounterexamplesof bistable swith.3.2.2 Double-positive feedbak loopThis kind of two-protein feedbak loop has the similar properties as the neg-ative loop. The PLDE system di�ers only in signs of step funtions used:dxdt = �xs+(y; �xy)� xx dydt = �ys+(x; �yx)� yyThe most representative on�guration and the respetive bistability prop-erties are stated in Table 4. The property (1) di�ers from the respetive prop-erty of the negative loop only in atomi propositions. The bistable swithontradition (2) is just the same formula.�yx < �xx < maxx 1. ((x > �yx ^ y > �xy ) ) G(x > �yx ^ y > �xy )) ^ ((x < �yx ^ y < �xy ) ) G(x < �yx ^ y < �xy ))�xy < �yy < maxy 2. (x = �yx ^ y = �xy ) ) ((GF(x > �yx) ^GF(x < �yx)) _ (GF(y > �xy ) ^GF(y < �yx)))Table 4Charateristi properties of double-positive feedbak loop3.2.3 Inoherent feedbak loopThe most interesting two-protein feedbak motif is based on irular intera-tion in whih the �rst of the two proteins ats as a repressor of the seondprotein prodution while the seond protein ats as an ativator of the �rstprotein (or vie-versa). Formally, the orresponding PLDE system for suh asituation an be of the following form:dxdt = �xs�(y; �xy)� xx dydt = �ys+(x; �yx)� yyThe representative on�guration of loal equilibria is determined by thesame inequalities as in the ase of the previous loop motifs. In suh a situation,the motif leads to osillatory behaviour (when initial onentrations are suit-ably set). The osillation means that eah of both speies periodially hangesits onentration value from the level below the threshold to the level abovethe threshold and vie-versa. Moreover, the osillatory behavior is in this asekept on for the entire time-live of the ell. LTL properties whih guarantee theosillatory behaviour for eah of the proteins are given in Table 5 as properties(1) and (2). 9



Barnat et al.�yx < �xx < maxx 1. (G((xa � �ba)) F(xa > �ba))) ^ (G((xa � �ba)) F(xa < �ba)))�xy < �yy < maxy 2. (G((xb � �ab )) F(xb > �ab ))) ^ (G((xb � �ab )) F(xb < �ab )))Table 5Charateristi properties of inoherent feedbak loop4 GeNeSim: Parallel Model Cheker for PLDE ModelsGeNeSim is build on the top of the DiVinE library that o�ers ommon fun-tions needed to develop a parallel or distributed enumerative model heker.The only extension to the library that was neessary, was the extension of thestate generator to a state generator tailored for the spei� input providedby GeNeSim GUI [?℄. For the struture of GeNeSim implementation andonnetion to DiVinE see Figure 2.
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the ativation and deativation of the respetive reation (represented by therelevant prodution/degradation rate onstant). We support two forms ofregulation terms { negative and positive. The positive term is de�ned asa diret produt of step funtions whereas the negative term is de�ned asa negation of a produt of step funtions. Both kinds of regulation termsallow all possible types of PLDE models to be enoded in GeNeSim. Negativeterms are neessary for modeling of transription fators whih have the formof multi-protein omplexes, as is showed in [19℄.The GeNeSim state generator implements the DiVinE methods getinitial() for determining the initial state of the system and get sus()that omputes a ontainer of suessors of a given state. By these two meth-ods the impliit representation of the qualitative simulation is implemented.Suh a representation allows integration of GeNeSim with DiVinE distributedon-the-y LTL model heking algorithm.An example of a simulation transition system generated by GeNeSim isdepited in Fig. 3 (on the right). It represents a qualitative simulation of thePLDE model of the double-negative loop motif presented in the previous se-tion. The information inluded in the individual states denotes the address ofthe domain and the so-alled diretion set property. The address of eah do-main is given as a vetor of disrete onentration levels of respetive proteinsin the symboli onentration spae (see Fig. 3). Diretion set property (dsp)expresses the information onerning the potential phases in the respetivedomain omputed by approximation. On the one hand, the dsp informationis used as a key resoure for generating suessors of swithing domains. Onthe other hand, omputation of the dsp information requires exploration ofall the potential neighbouring states. Suh exploration takes an indispensableamount of time. Therefore saving of the dsp information into states aeler-ates generation of the simulation state spae. For a partiular domain D it11



Barnat et al.an gather the following values:dsp(D) = 8>>><>>>: 2; if D represents a steady state;1; if the set of phases is empty (only if D is swithing);0; otherwise: (1)
The value 1 has sense only for states whih represent swithing domains.The empty phase set signalises that the respetive swithing domain mustbe immediately left after it is entered. It symbolises the fat that in suh adomain no substrate an keep its onentration onstant.In general, to minimise the memory needed for alloation of states, we havedeided to save into states only the mentioned information. All other informa-tion is omputed on-the-y whenever it is needed for state spae generation,and onsequently, during a partiular analysis.5 Experiments6 ConlusionsResults presented in the previous setion show that the parallel approah ael-erates simulation and model-heking of geneti regulatory networks. Averagemaximal rate of aeleration ahieved by our experiments makes the parallelanalysis 7.5 times faster than the sequential analysis with GNA. In partiu-lar, the parallel approah enables queries for models having up to 10 statevariables to be answered in terms of minutes. Moreover, also larger models(more than 10 variables), whih are not satisfatorily tratable by the expliitsequential approah, an be still analysed by the impliit parallel approah onsuitably large lusters.To summarise, our ontribution is a demonstration of the use of parallelmodel-heking for biologial systems. In partiular, we provide a translationof a pieewise-linear model of a geneti regulatory network into a disretetransition system whih serves as an input for the parallel model-heker Di-VinE. The approah allows for parallel on-the-y model-heking of largernetworks than is possible by sequential algorithms. The preliminary exper-iments onduted with the tool on�rm good salability. Though we havefoused on qualitative analysis, the DiVinE tool is also able to analyse somestohasti and quantitative properties as well. These extensions together withimprovements of the GeNeSim implementation in speeding-up the state spaeexploration, and that way reahing pratiable results for extremely large net-works (having around 100 variables), remain for our future work.12
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